Isolation and characterization of post-splicing lariat–intron complexes
نویسندگان
چکیده
Pre-mRNA splicing occurs in a large complex spliceosome. The steps of both spliceosome assembly and splicing reaction have been extensively analyzed, and many of the factors involved have been identified. However, the post-splicing intron turnover process, especially in vertebrates, remains to be examined. In this paper, we developed a two-tag affinity purification method for purifying lariat intron RNA-protein complexes obtained from an in vitro splicing reaction. Glycerol gradient sedimentation analyses revealed that there are at least two forms of post-splicing intron complexes, which we named the 'Intron Large (IL)' and the 'Intron Small (IS)' complexes. The IL complex contains U2, U5 and U6 snRNAs and other protein splicing factors, whereas the IS complex contains no such U snRNAs or proteins. We also showed that TFIP11, a human homolog of yeast Ntr1, is present in the IL complex and the TFIP11 mutant protein, which lacks the interaction domain with hPrp43 protein, caused accumulation of the IL complex and reduction of IS complex formation in vitro. Taken together, our results strongly suggest that TFIP11 in cooperation with hPrp43 mediates the transition from the IL complex to the IS complex, leading to efficient debranching and turnover of excised introns.
منابع مشابه
Breaking Up the C Complex Spliceosome Shows Stable Association of Proteins with the Lariat Intron Intermediate
Spliceosome assembly requires several structural rearrangements to position the components of the catalytic core. Many of these rearrangements involve successive strengthening and weakening of different RNA:RNA and RNA:proteins interactions within the complex. To gain insight into the organization of the catalytic core of the spliceosome arrested between the two steps of splicing chemistry (C c...
متن کاملIn vivo characterization of yeast mRNA processing intermediates.
Yeast mRNA introns contain a conserved sequence, TACTAAC, required for splicing. We previously identified a putative splicing intermediate characterized by a stop to reverse transcriptase at the TACTAAC box of the wild-type rp51A (ribosomal protein 51A gene) intron. We now show that this stop is due to a branch and occurs at the identical nucleotide in the actin intron TACTAAC box. We show furt...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملIsolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae.
In this study we report the isolation of temperature-sensitive mutants that affect pre-mRNA splicing. A bank of approximately 1000 temperature-sensitive Saccharomyces cerevisiae strains was generated and screened on RNA gel blots by hybridization with an actin intron probe. We isolated 16 mutants defining 11 new complementation groups prp(rna)17-prp(rna)27 with four phenotypic classes of mutant...
متن کاملCharacterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing
Besides linear RNAs, pre-mRNA splicing generates three forms of RNAs: lariat introns, Y-structure introns from trans-splicing, and circular exons through exon skipping. To study the persistence of excised introns in total cellular RNA, we used three Escherichia coli 3' to 5' exoribonucleases. Ribonuclease R (RNase R) thoroughly degrades the abundant linear RNAs and the Y-structure RNA, while pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 37 شماره
صفحات -
تاریخ انتشار 2009